7 research outputs found

    Technical Research Priorities for Big Data

    Get PDF
    To drive innovation and competitiveness, organisations need to foster the development and broad adoption of data technologies, value-adding use cases and sustainable business models. Enabling an effective data ecosystem requires overcoming several technical challenges associated with the cost and complexity of management, processing, analysis and utilisation of data. This chapter details a community-driven initiative to identify and characterise the key technical research priorities for research and development in data technologies. The chapter examines the systemic and structured methodology used to gather inputs from over 200 stakeholder organisations. The result of the process identified five key technical research priorities in the areas of data management, data processing, data analytics, data visualisation and user interactions, and data protection, together with 28 sub-level challenges. The process also highlighted the important role of data standardisation, data engineering and DevOps for Big Data

    Sharing lighting control in an open office: doing one's best to avoid conflict

    No full text
    Personal control for office workstation specific lighting was studied already for several decades, whereas this form of lighting control for multi-user offices is a relatively young field of research. The proliferation of open offices in the last decade makes it vital to understand the benefits and drawbacks of personal lighting control in multi-user spaces. This paper presents the results of two field experiments that explored the experience of conflict and the social dynamics among open office users to whom personal lighting control was offered. The study data revealed that in multi-user spaces, individuals are self-conscious of the presence of others and deploy different strategies in order to avoid conflict due to control of lighting. The paper discusses the implications these findings have for the design of multi-user lighting control. This study shows that individuals feel the nuisance of having no control over lighting stronger after they lose it, than the satisfaction gains felt when they initially got control, known as a loss aversion bias. This has implications for promoting beneficial effects of personal lighting controls in open office environments

    Technical research priorities for big data

    Get PDF
    To drive innovation and competitiveness, organisations need to foster the development and broad adoption of data technologies, value-adding use cases and sustainable business models. Enabling an effective data ecosystem requires overcoming several technical challenges associated with the cost and complexity of management, processing, analysis and utilisation of data. This chapter details a community-driven initiative to identify and characterise the key technical research priorities for research and development in data technologies. The chapter examines the systemic and structured methodology used to gather inputs from over 200 stakeholder organisations. The result of the process identified five key technical research priorities in the areas of data management, data processing, data analytics, data visualisation and user interactions, and data protection, together with 28 sub-level challenges. The process also highlighted the important role of data standardisation, data engineering and DevOps for Big Data

    Data Science in Healthcare: Benefits, Challenges and Opportunities

    No full text
    The advent of digital medical data has brought an exponential increase in information available for each patient, allowing for novel knowledge generation methods to emerge. Tapping into this data brings clinical research and clinical practice closer together, as data generated in ordinary clinical practice can be used towards rapid-learning healthcare systems, continuously improving and personalizing healthcare. In this context, the recent use of Data Science technologies for healthcare is providing mutual benefits to both patients and medical professionals, improving prevention and treatment for several kinds of diseases. However, the adoption and usage of Data Science solutions for healthcare still require social capacity, knowledge and higher acceptance. The goal of this chapter is to provide an overview of needs, opportunities, recommendations and challenges of using (Big) Data Science technologies in the healthcare sector. This contribution is based on a recent whitepaper (http://www.bdva.eu/sites/default/files/Big%20Data%20Technologies%20in%20Healthcare.pdf) provided by the Big Data Value Association (BDVA) (http://www.bdva.eu/), the private counterpart to the EC to implement the BDV PPP (Big Data Value PPP) programme, which focuses on the challenges and impact that (Big) Data Science may have on the entire healthcare chain
    corecore